




Introduction
Recent technological advances have moved the focus of biologists 

from how to measure biological parameters to how to analyze and 

interpret tens of thousands of measurements, frequently called 

omics data. The first solutions for such a problem were limited 

to hierarchical clustering1–3 and simple comparisons between 

classes of data through the identification of differentially expressed 

genes (DEGs)4,5. Nowadays, reconstruction and interrogation of 

biological networks have become a widely used approach to get 

insights from different types of omics data6,7.

After establishing co-expression networks for different states of 

one biological system, differential co-expression analysis investi-

gates their structural changes when a system goes through a state 

transition. This analysis, first proposed more than a decade ago8,9, 

identifies the pairs of genes that have their interaction changed 

during such transition. Several later publications have suggested 

different algorithms and statistics to determine differential gene  

co-expression10–27. Fewer studies, however, attempted to evaluate 

the biological significance of these changes18,21. Also, to the best of 

our knowledge, there have been no studies that would investigate 

how this approach performs depending on the type and complexity 

of the biological system analyzed.

Commonly, a state transition of a biological system is related to 

perturbation of a set of genes, which propagates through network 

interactions and affects other genes. Thus, there is a possibility that 

differentially co-expressed (DC) genes (directly or indirectly) con-

tribute to the propagation of perturbations. In order to investigate 

the role of DC genes in a state transition of a biological system, we 

considered two biological processes28,29 previously analyzed by our 

group. The first one (B cell deficiency in mice) is a homogenous, 

one-causal-factor process, while the second one (cervical cancer) 

represents a heterogeneous multi-causal system.

In this work, a co-expression network is an undirected graph, where 

the set of nodes consists of a set of DEGs, and a pair of nodes 

is connected if there is a significant correlation between them. 

Differential co-expression analysis is done by identifying the pairs 

of genes that suffer significant changes in correlation between two 

states. Throughout this paper such pairs are called differentially 

correlated pairs (DCPs) and the genes forming these pairs are con-

sidered DC genes.

Results
B cell deficiency
We started by analyzing the B cell knockout (BcKO) data28, which 

represents a relatively simple experimental model with only one 

causal factor (B lymphocytes) and homogenous subject groups 

since this experiment was performed in highly inbred strains of 

mice.

In order to select the nodes to reconstruct the co-expression 

networks (BcKO and Control) we compared gene expression in 

jejunum between BcKO and control mice and found 509 DEGs  

(Dataset 1). Next, the edges for each network were determined  

using significantly correlated pairs of DEGs (Figure 1). To 

identify DCPs we used the method introduced in21 which compares  

correlations in the BcKO group and in the Control group. Eighty 

DCPs were found (Dataset 2), of which 56 represent correla-

tion gains (edges which were not present in Control network but 

showed up in BcKO) and 24 represent losses.

Figure 1. Co-expression networks for BcKO data. The nodes are composed by DEGs and the edges represent significant correlations 
between nodes. The causal genes (immunoglobulin genes) and the DCP edges are concentrated in the high connectivity region with several 
causal genes forming DCPs.
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Dataset 1. Differentially expressed genes from BcKO study

http://dx.doi.org/10.5256/f1000research.9708.d142100

Contains p-values, ratios of expression means, combined Fisher’s 

p-value, fdr, direction of regulation, whether it is Ig gene and whether 

it is DC gene.

Dataset 2. Differentially correlated pairs from BcKO study

http://dx.doi.org/10.5256/f1000research.9708.d142099

Contains information such as “change direction” (whether each pair 

gained or lost correlation/edge), “sign of local partial correlation” 

in BcKO data and control data, “regulation” (whether each gene of 

each pair is up- or down-regulated in BcKO), “number of Ig genes” 

in each pair.

Now we investigate whether network structural changes, herein  

represented by DCPs, are related to actual causes of global change 

in gene expression. In the previous study28, it was shown that 

intestinal gene expression alterations in BcKO mice are mostly  

dependent on the ability of B lymphocytes to produce antibodies. 

Therefore, we analyzed the presence of immunoglobulin coding 

genes (Ig genes, see Dataset 3) among differentially expressed 

genes (26 Ig genes among 509 DEGs) in DCPs. We observed 

that 72% (39 out of 54) of correlation gain DCPs are formed by 

at least one Ig gene, (Figure 2A). Moreover, we found strong  

enrichment for Ig genes among DC genes in correlation gain (24% 

(15 out of 63) of DC genes are Ig genes vs 2.7% (11 out of 415) 

of other DEGs are Ig genes), while no enrichment was observed 

for correlation lost as a result of B cell deficiency (Figure 2B).  

Thus, these results support the idea that differentially expressed 

genes that acquire correlations during transition from one 

biological state to another have a high chance to play causal roles 

in such transition.

Dataset 3. Causal genes from BcKO study

http://dx.doi.org/10.5256/f1000research.9708.d142097

Contains the Ig genes considered causal along with annotation and 

whether they are considered DC genes or not.

Figure 2. A) 78 Differentially Correlated Pairs (DCPs) were found, of which 54 represent correlation gains (edges which were not present in 
Control network but showed up in BcKO) and 24 represent correlation losses. The table stratifies the set of pairs representing correlation gains 
and losses according to the amount of Ig genes (0, 1 or 2) present in a pair. Note that 39 out of 54 of correlation gain DCPs are formed by at 
least one Ig gene while only 2 out of 22 correlation losses have at least one Ig gene. B) The 78 DCPs are formed by a total of 94 Differentially 
Co-expressed genes (DC genes). 58 DC genes participate only in correlation gain DCPs, 31 only in correlation loss DCPs and 5 of them 
participate in both correlation gain and loss DCPs. The results show enrichment for Ig genes among DC genes in correlation gain: 24% (15 
out of 63 (=58+5)) of DC genes are Ig genes vs 2.7% (11 out of 415) of other DEGs are Ig genes (p value < 0.001). Meanwhile no enrichment 
was observed for correlation loss as a result of B cell deficiency: 3% (1 out of 36 (=31+5)) of DC genes are Ig genes vs 2.7% (11 out of 415) 
of other DEGs are Ig genes.
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Cervical cancer
Analysis of gene expression data. In order to study differentially 

co-expressed genes in a more complex biological model we turned 

to cancer. It is well known that cancers of the same clinically/ 

morphological type can be very different on molecular levels. One 

of the most studied causes for such diversity is the different sets 

of chromosomal aberrations and mutations harbored by tumors  

otherwise defined as the same cancer. In previous study29, we 

have found 36 cervical cancer driver genes located in multiple 

chromosomal aberrations (Dataset 4). Thus we decided to use 

cervical cancer data from 29 for investigation of the role of DCPs 

in complex biological processes due to its heterogeneity and 

previously acquired knowledge of essential causal genes.

Dataset 4. Causal genes from cervical cancer study

http://dx.doi.org/10.5256/f1000research.9708.d142098

Contains the chromosomal aberration genes considered causal 

along with annotation and whether they are considered DC genes 

or not.

We used the DEGs between tumor and normal tissue as the  

nodes of the co-expression networks. Since the number of samples 

(five datasets, 148 tumor samples and 67 normal samples) was 

larger than in BcKO study (two datasets, 22 paired samples), we 

used the partial correlation coefficient as a measure of co-expres-

sion (Figure 3). The potential advantage of using partial correlation 

is that it aims to infer edges that are a result of direct regulatory 

relations6. Partial correlations were calculated through the Local 

Partial Correlation (LCP) method30 (Material and Methods).

In this study seven DCPs composed of 14 DC genes were found. 

Interestingly, all DCPs were differential correlations gained in 

tumors (Table 1). Only one of the 36 key drivers (CEP70) was 

identified among the 14 DC genes. Accordingly, no enrichment of 

key driver genes among DC genes was detected in this analysis.

Even though we observed that DCPs are not necessarily formed by 

key drivers, it is known from literature that most of the DC genes 

found play regulatory roles in other types of cancer31–48. Thus we 

hypothesized that DCPs are located downstream of key drivers and 

can be responsible for changes of regulatory chain events coming 

from the key drivers and spreading throughout the network. In order 

to verify this hypothesis, we investigated how close DC genes are 

to key drivers and whether their “signal flow”49 in the tumor co-

expression network is stronger than that of the other genes. In order 

to verify this hypothesis we investigated two network measures: 

Minimum Shortest Path and Bi-partite Betweenness Centrality.

First we compared the shortest paths from key driver genes to 

DC genes and to all other DEGs in the network. We found that 

DC genes are located statistically closer than the rest of genes in 

the network to key drivers (Figure 4A, Wilcoxon test < 0.014 and 

Permutation test < 0.021). Then we used Bi-partite Betweenness  

Centrality6 as a measure of the signal flow from key drivers to 

peripheral genes (genes with only one edge)6. We evaluated 

this measure for DC genes and remaining DEGs and observed 

that DC genes had much higher values than other genes in the  

network. Figure 4B illustrates a comparison of boxplots of 

bi-partite betweenness centrality between these two groups con-

cerning DCPs and the rest (non DCPs, non-key drivers, non- 

peripheral). We can observe that the bi-partite betweenness 

Figure 3. Co-expression networks for cervical cancer data. The nodes are composed by DEGs and the edges represent significant local 
partial correlation between nodes. A few causal genes (key drivers) and DCP edges are located in the high connectivity region, but scattered 
throughout the network. Only one key driver is amongst the genes in DCPs.
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Figure 4. Topological properties of Differentially Correlated Genes (DCGs). A) Barplot of the shortest path to the causal genes and 
originated in either the genes in DCPs (in orange) or the non DCP genes (in blue). The distribution in orange is concentrated in lower values. 
B) Boxplot comparing the values of Bipartite Betweenness Centrality of the genes in DCPs (in orange) and the non-DCP genes (in blue). The 
boxplot on the left is concentrated in higher values.

Table 1. DCPs – cancer (* key drivers).

Gene 
symbol 1

Gene 
symbol 2

Change 
direction

Sign of local partial 
correlation in tumor

Regulation 1 Regulation 2

ANP32E CACYBP Gained edge > 0 UP UP

CENPN DHFR Gained edge > 0 UP UP

C10orf68 FGFR2 Gained edge > 0 DN DN

AK2 HNRNPR Gained edge > 0 UP UP

CEP70* SEPHS1 Gained edge > 0 UP UP

NIPAL2 TRPM3 Gained edge > 0 DN DN

They stem 
ARHGEF12

ZSCAN18 Gained edge > 0 DN DN

centralities of DCPs are concentrated in higher values than the 

rest. Mann-Whitney test gave us a p-value of 7.868 X 10-5, which 

gives us evidence that the distribution of Bi-Partite Betweenness  

Centrality in DCP genes is higher. For more details see Figure S2.  

Thus, altogether these results suggest that DC genes might be 

“bottlenecks”, that is, required to transmit a signal from key 

drivers to other genes in the network, therefore, supplement 

the hypothesis of a regulatory role of DC genes (Figure S1).

Knockdown experiments. In addition, data from other cancers  

provide indirect support for the idea of regulatory role of DC genes 

in cervical cancer31–48. However, since a role of these DC genes in 

carcinogenesis was not as straightforward as for immunoglobulin 

genes in B cell deficiency, we decided to perform experimen-

tal tests. Among the DC genes found for cervical cancer, there  

were seven up-regulated and seven down-regulated in cancer. 

Therefore, for validation experiments we chose one down-regulated 

(FGFR2) and one up-regulated (CACYBP) gene that have not been 

previously studied in cervical cancer for regulatory properties, but 

have a potential connection with cell death or proliferation based 

on their Gene Ontology annotations. In order to test if FGFR2 and 

CACYBP play critical regulatory roles in cancer pathogenesis, 

we evaluated the effect on in vitro knockdown of these genes on  

cell proliferation in a cervical carcinoma cell line.

First, we tested two cervical cancer cell lines (Hela and ME180) 

and found that only ME180 had detectable expression levels of 

both genes. In order to perform these tests, we evaluated siRNAs 

and observed that they were able to knock down expression of 

both genes by at least 70% (Figure 5A). CACYBP is up-regulated 

in tumor tissue, as compared to normal tissue (Figure 5B). Con-

sequently, if CACYBP has regulatory potential, as predicted by 
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Figure 5. Experimental evaluation of DCGs in cervical cancer. A) Efficacy of FGFR2 and CACYBP siRNA knockdown. qRT-PCR with 
primers for GAPDH as the internal control was used to determine expression and efficacy of FGFR2 and CACYBP specific siRNA knockdown 
in endothelial cells (ME180). ME180 cells were harvested 72 h after transfection with vehicle (Lipofectamine) and either scrambled control 
or targeting siRNA. B) Gene expression of FGFR2 and CACYBP (mean +/- standard deviation) for tumor and normal samples from five 
datasets used in the analysis. Since FGFR2 was found down-regulated in tumor tissue, its potential regulatory role would be as a tumor 
suppressor. However, CACYBP is up-regulated, thus CACYBP should function as an oncogene promoting cell proliferation. C) Evaluation of 
cell proliferation inhibition using xCelligence System. Proliferation data (cell index) was obtained at 72 h after transfection with Lipofectamine 
and either scrambled control or targeting siRNA. Inhibition index was calculated (two step normalization of cell index): inhibition index > 0 
– cells transfected with targeting siRNA showed decrease in proliferation; < 0 – showed increase in proliferation; = 0 – no difference from 
control was found. One sided T test for mean (< 0 for FGFR2 and > 0 for CACYBP) was applied and returned statistically significant p-values 
for both of them (0.0258 for FGFR2 and 0.01978 for CACYBP).

our analysis, it should function as an oncogene promoting cell 

proliferation. Therefore, the knockdown of this gene should result 

in a decrease of cell growth/survival. Since FGFR2 was found 

down-regulated in cervical carcinomas (Figure 5B) its potential 

regulatory role would be as a tumor suppressor. Therefore, the 

knockdown of this gene is expected to increase cell growth. The 

subsequent analysis of cell proliferation confirmed our predic-

tions for both genes: knockdown of CACYBP led to a decrease of 

cell growth, while knockdown of FGFR2 induced higher cell 

proliferation (Figure 5C). Thus, these results provide additional 

support to our in silico prediction that DC genes may play a 

regulatory role in cell proliferation related to tumor growth.

Dataset 5. Cytoscape Edges and Nodes tables from network in 

Figure 1

http://dx.doi.org/10.5256/f1000research.9708.d14210

The datasets are sufficient to reproduce Figure 2.

Dataset 6. Cytoscape Edges and Nodes tables from network in 

Figure 3

http://dx.doi.org/10.5256/f1000research.9708.d142102

The datasets are sufficient to reproduce Figure 4.
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 Dataset 7. Raw data for Figure 5A,C

 http://dx.doi.org/10.5256/f1000research.9708.d142103

 Raw data for Figure 5A:

 qRT PCR siRNA test.

 Instrument Type: steponeplus

 Passive Reference: ROX

 Analysis Type: Singleplex

 Endogenous Control: GAPDH

 RQ Min/Max Confidence Level: 95.0

 Reference Sample: A

 Raw data for Figure 5C:

 Three xCellingence experiments.

Discussion
In the current study, the differential co-expression analysis21 was 

applied to two relatively well-investigated biological systems28,29 

in order to evaluate the potential importance of genes found using 

differential correlation analyses. Overall, the obtained results 

support the idea that DC genes play a regulatory role. While in 

B cell deficiency DCPs were found highly enriched with immu-

noglobulin genes (i.e. causal genes for alterations in the gut) 

we did not observe enrichment for key driver genes in cervical 

cancers. Rather, DCPs of cervical cancer seem to be located 

downstream of causal genes. Indeed, those DCPs have been found 

closer to key regulators than other genes in the network, actually 

representing “bottlenecks” for communication between driver 

genes previously published in 29 and the rest of the network 

(Figure 4). Furthermore, some differentially co-expressed genes in 

cervical cancer have been previously implicated in processes such 

as metastasis, oncogenic autophagy and apoptosis. For example, 

CACYBP has been shown to promote colorectal cancer metasta-

sis31, TRPM3 was observed to play a role in oncogenic autophagy 

in clear cell renal cell carcinoma32,33, and AK2 was reported to 

activate apoptotic pathway34. Several genes are investigated for 

prognostic value for cancers such as myeloma35, lymphoma36, 

breast37–41 and gastrointestinal42,43 cancers. At least two genes were 

previously proposed as targets for anti-cancer agents: DHFR44 and 

FGFR245. Moreover, CACYBP and ZSCAN18 were also reported 

as putative tumor suppressor genes in renal cell carcinoma30,46,47. 

In addition, we have tested two DC genes and confirmed their 

regulatory role (FGFR2 as a tumor suppressor and CACYBP as 

a potential oncogene in cervical cancer) by manipulating their 

expression in vitro. Altogether, published observations and our 

experimental validation for these two genes support the idea that 

DC genes revealed in the current study play a regulatory role and 

can be candidate targets for cervical cancer treatment.

Interestingly, while in the model of B cell deficiency, the DC genes 

are highly enriched with causal regulatory genes, there was only 

one key driver in cervical cancer (CEP70), despite the DC genes 

in this system still seeming to play a regulatory role overall. 

Such a difference is potentially related to the fact that the mouse 

system studied in 28 is highly homogeneous (inbred mice) with 

only one cause of alterations (i.e. absence of B lymphocytes). 

Cervical cancer, however, is a heterogeneous system with different  

chromosomal aberrations and consequently turned-on expression 

of different driver genes in different patients. Therefore, we can 

speculate that differential correlations point to regulatory genes 

that are shared by majority of samples. This hypothesis warrants 

further investigation, especially considering that DCPs could 

represent common therapeutic targets for tumors that originated 

as a result of different genomic or epi-genomic events.

In conclusion, this study provided additional evidence for the  

previously suggested idea8–27 that genes presenting alterations 

in correlation patterns between different phenotypes (i.e. states 

of biological system) play a critical regulatory role in transi-

tions from one state to another. Furthermore, although our results  

do not allow for full generalization, they indicate that gain and 

not loss of correlations connects critical genes involved in transi-

tions to new phenotypes. However, further studies are required to  

understand how changes in correlation patterns can point to genes 

with critical capacity to guide a biological system into certain state/

phenotype.

Material and methods
Preparation of microarray data
BcKO. All microarray data were analyzed using BRB Array-Tools 

developed by the Biometric Research Branch of the National 

Cancer Institute under the direction of R. Simon (http://linus.nci.

nih.gov/BRB-ArrayTools.html). Array data were filtered to limit 

analysis to probes with greater than 50% of samples showing 

spot intensities of >10 and spot sizes >10 pixels, and a median 

normalization was applied.

Cervical cancer. Same as in cervical cancer29. The data were 

analyzed using BRB Array-Tools using the original normalization 

used in three studies50–52 and median normalization over entire the 

array for the fourth study53. For all studies, we only considered 

genes found in at least 70% of arrays.

Filtering and meta-analysis of microarray data
In every analysis (DEGs, DCPs and networks), filter of direction 

(same sign of correspondent parameter – difference of mean, differ-

ence of correlation, correlation and partial correlation) was required 

in a fixed number of datasets (2 out of 2 in BcKO and 3 out of 5 

in cervical cancer). Then meta-analysis was done through Fisher 

combined probability test54. Next, the pairs with false discovery rate 

(fdr)55 lower than a threshold are chosen. At last, only the pairs that 

pass PUC56 are considered correlated and therefore represent edges 

in the network.

Analysis of microarray data
BcKO. DEGs between groups of samples were identified by  

random variance paired t-test p-value lower than 5% with adjust-

ment for multiple hypotheses by setting the fdr below 10% in 

BRB Array-Tools. Co-expression networks (BcKO and Control) 

were inferred through Pearson correlation with p-value < 20% and 

fdr adjustment below 2.5%. DCPs were calculated for pairs that  

were initially correlated (p-value < 20%) in at least one state.  

Then differences of Pearson correlation were tested following21 

with a p-value below 10% and fdr < 2%. At last only the DCPs  

that showed up in one of the networks were selected.
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Cervical cancer. DEGs were retrieved from a cervical can-

cer paper29. Correlation networks and DCPs followed the same 

procedure and in BcKO but with different p-values (correlation 

p-value < 10% with fdr < 10-8 and difference of correlation p-value 

< 10% with fdr < 0.25%). Partial correlation was computed using 

local partial correlation method30. The initial significance was 

p-value lower than 40% and then fdr < 5%.

For more details about the thresholds used, see Table S3 and  

Table S4.

Local partial correlation network
Two aspects of cervical cancer data motivated us to use local 

partial correlation for this system. First of all, we have more 

samples throughout five datasets (see Supplementary Table S1 

and Supplementary Table S2) which allows us to have more 

confidence in our results and second we already know that tumors 

in general present heterogeneous causal factors. The partial 

correlation approach gives us the alternative to only consider 

edges that represent direct regulatory relations.

In this paper we used the new approach developed in 30 called  

local partial correlation. This approach was elaborated specially 

for cases when there are more variables than samples, which hap-

pens regularly in genetics and is a serious problem in classical  

statistics. First we calculate the correlation network. Then for 

each significantly correlated pair the inverse method is applied 

exclusively to the correlation sub-matrix formed only by the 

closest neighbors of the pair along with the genes forming the pair,  

Figure 6. If the number of closest neighbors is still higher than the 

number of samples n, then we decreasingly rank the correlations 

of the neighbors to either genes in the pair and select the first n/2 

neighbors. For each sub- matrix, we only keep the partial correla-

tion value regarding the pair that formed that sub- matrix and then 

calculate its p-value also based on the sub- matrix. R script for  

calculation is available in Supplementary Material.

Partial correlations were estimated only for the significant  

(Pearson) correlations in co-expression network. Thus the same 

definition of DCPs (by Pearson correlation) can still represent 

structural changes as long as it remains present in one of the two 

networks.

Figure 3 illustrates the local partial correlation network for cervical 

cancer using only tumor data. It has 578 connected nodes and 824 

edges.

Figure 6.  Local partial correlation scheme: we calculate the LPC for pair X
2
, X

5
, (red nodes/edge). The neighborhood of this pair is the 

set of nodes X
3
, X

6
, X

8
, X

9
 (black nodes/edges). X

1
, X

4
, X

7
 (blue nodes) are significantly correlated with the black nodes (blue edges), but not 

with the red nodes. Thus the inverse method is applied exclusively to the correlation sub-matrix formed only by the genes X
2
, X

5
, X

3
, X

6
, X

8
, 

X
9
. In correlation matrices the gray entries are statistically non-significant empirical correlations.
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Minimum shortest path
The shortest path is a method that calculates distances between 2 

nodes in a network. It consists of the minimum number of edges 

connecting 2 nodes. In this case we want to know the minimum 

number of edges connecting one node, either DCP gene or not, 

to a group of nodes: the key drivers Figure 7. For each gene we 

calculate the shortest path to all key drivers and get the minimum 

value. Then we compare the minimum shortest path to key driv-

ers coming from DCP genes and the remaining genes. Figure 4A 

shows that the minimum shortest path to key drivers tend to be 

smaller when originated in DCP genes.

Bi-partite betweenness centrality
Betweenness Centrality measures the node’s centrality in a 

network by counting the number of shortest paths from all verti-

ces to all other vertices that pass through that node. A gene with 

high betweenness centrality has a great influence on the transfer 

of signal through the network Figure 8.

However we are interested in the signal passing from key drivers 

throughout the network. For this reason we decided to apply 

the measure previously developed by our lab6 called Bi-partite  

Betweenness Centrality. It measures the amount of shortest path 

Figure 7. In this example we show how to calculate the distance (length of shortest path) between the gene G
2
 and group of genes 

D
1
, D

2
, D

3
, D

4
 (nodes in red).

Figure 8. Here we explain how to calculate bi-partite betweenness centrality (bc) between groups A and B. Note that the node D has 
bigger bc because all shortest paths connecting nodes in group A to nodes in group B pass through the node D.
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going from all genes in one group of vertices to all genes in a 

different group of vertices. In our case, the groups of genes are the 

key drivers and the peripheral genes (genes connected to only one 

edge).

Experimental design
FGFR2 and CACYBP knockdown experiment
ME180 cells were transfected with FGFR2-, CACYBP-specific  

siRNA or control siRNA using Lipofectamine RNAiMAX 

Transfection Reagent. Cell growth rate during 72h after siRNA 

transfection was measured using xCelligence system as described 

below.

Evaluation of siRNA efficacy in knocking down the gene targets. 

ME180 cell line was obtained from Dr. Pulivarthi H. Rao. It was 

cultured in RPMI medium with 10% FBS and 1% Penicillin- 

Streptomycin added. The cells were seeded at density 4000 cells 

per well in 96 F-bottom plates (seeding procedure was done 

according to ATCC protocol for ME180 cell line) and with cell 

culture media 200 ul per well. 24 hours after seeding, cells were 

transfected with one of the three siRNA, see Table 2.

Before transfection, 100 uL of media was taken from each well. 

Transfection procedure was done according to Lipofectamine 

RNAiMAX Reagent protocol (Protocol Pub. No. MAN0007825 

Rev. 1.0). 3pM of siRNA per well and Lipofectamine 0.6 uL per 

well were delivered in 20uL. 80 uL of fresh cell culture media was 

added to each well.

Cells were collected 72 h after transfection using Lysis buffer  

from RNeasy Mini Kit (QIAGEN). RNA extraction was done using 

RNeasy Mini Kit (QIAGEN) according to the manufacturer’s 

protocol (no Dnase treatment step was done). Concentrations of 

RNA measured with Qubit RNA BR Assay Kit. cDNA was done 

using Bio-Rad iScript cDNA Kit according to the manufacturer’s  

protocol.

Quantitative Real-Time PCR was done for the samples using 

QuantiFast SYBR Green PCR Kit and GAPDH as a control gene. 

Primers for the targets you can see in the Table 3.

qRT PCR set up: sample was heated to 95°C, followed by 40 cycles 

of 95°C for 10 sec and 60°C for 30 sec.

Evaluation of cell growth after knock down of gene targets. 

CACYBP is up-regulated in tumor tissue, as compared to normal 

tissue (Figure 5B). Consequently, if CACYBP has regulatory  

potential, as predicted by our analysis, it should function as an  

Table 3. Primers and Targets.

Target Forward/
Reverse

Primer sequence (5’ -> 3’)

FGFR2 Forward AACAGTTTCGGCTGAGTCCAG

FGFR2 Reverse GCCCAGTGTCAGCTTATCTCTT

CACYBP Forward CTCTGTGGAAGGCAGTTCAAA

CACYBP Reverse TCAGGTAATCCCACCTTGTGTT

GAPDH Forward GGAGCGAGATCCCTCCAAAAT

GAPDH Reverse GGCTGTTGTCATACTTCTCATGG

Table 2. Suppliers.

Target Supplier Supplier ID

FGFR2 ThermoFisher s5173

CACYBP ThermoFisher s25819

Non-targeting 
siRNA

Dharmacon D-001810-01-05

oncogene promoting cell proliferation. Therefore, the knockdown 

of this gene should result in a decrease of cell growth/survival. 

Since FGFR2 was found down-regulated in cervical carcinomas  

(Figure 5B) its potential regulatory role would be as a tumor 

suppressor. Therefore, the knockdown of this gene is expected to 

increase cell growth.

Cell growth was evaluated using xCelligence system (The 

RTCA DP Instrument) using manufacturer’s protocol. ME180 

was cultured in RPMI media with 10% FBS and 1% Penicillin- 

Streptomycin added. The cells were seeded at density 4000 cells 

per well (E-Plate 16) in 200 uL of cell culture media.

24 hours after seeding, the experiment was paused for transfecton. 

Before transfection, 100 uL of media was taken from each well. 

Transfection procedure was done according to Lipofectamine 

RNAiMAX Reagent protocol (Protocol Pub. No. MAN0007825 

Rev. 1.0). 3pM of siRNA per well and Lipofectamine 0.6 uL per 

well were delivered in 20uL; 80 uL of fresh cell culture media was 

added to each well. Plate was placed back in the slot and cell growth 

was evaluated for another 72 h.

Cell index normalization. To evaluate cell growth rate cell index 

was transformed into Inhibition index in two steps: 

1.    Cell indexes for all wells were exported to the excel 

file. For each treatment (including non-targeting siRNA 

transfected wells) we extracted cell index average for all 

wells at 20 h after seeding (Cell Index Before Treatment) 

and at 96 h after seeding (Cell Index After Treatment). To 

normalize cell index to initial cell number differences for 

each of the treatments we used the following formula:

=

CellindexAfterTreatment

CellindexBeforeTreatment

After/Before Treatment 

Normalized Cell Index (A/B Index)

2.    In next step we normalized each treatment with target-

ing siRNA to treatment with non-targeting siRNA. For 

this purpose in each experiment A/B Index from treat-

ment (siRNA targeting either FGFR2 or CACYBP) was 

normalized to A/B Index from control treatment using the  

following formula:

    
=

Control A/B Index – Treatment A/B Index

Control  A/B Index
Inhibition Index
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 Final evaluation of growth was done according to the value of 

Inhibition Index:

>0 – there is a decrease in growth;

 0 – no difference between treated with targeting and treated 

with non-targeting siRNA;

<0 – there is a growth after treating with targeting siRNA.
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